
From Metacomputing to Metabusiness Processing* 

Li-jie Jin 
ljjin@hpl.hp.com 

Software Technology Laboratory 
Hewlett-Packard Labs 

Abstract 
The importance of large-scale electrical business 
processing is increasing today as recent Internet 
technologies build on the basic infrastructure. Simply 
integrating existing technologies and resources to form 
a platform that satisfies large-scale electrical business 
processing requirements is not enough, however. 
Legion is a wide-area distributed object system that 
offers mechanisms for describing, creating, and 
managing objects in a large-scale, heterogeneous, 
distributed computing environment. Its original design 
objective was to build a global virtual-computer system 
that uses Legion as its operating system for compute- 
intensive applications. This paper introduces our efforts 
to extend the Legion system into a backbone that 
supports business processing with consistent resource 
representations, identical service interfaces, and an 
easy-to-use developing environment. We will focus on a 
framework that supports CORBA from within the 
Legion system. 
Keywords: metabusiness processing, Legion, CORBA 

1. Introduction 

1.1 Business processing and CORBA 

E-commerce has grown dramatically in recent 
years. Business enterprises need effective, flexible, 

Andrew Grimshaw 
grimshaw@cs.virginia.edu 

Computer Science Department 
University of Virginia 

scalable and reliable information platforms in order to 
adapt to changing market and global competition. 
Information platforms must cooperate in order to 
handle the rapidly increasing number of business-to- 
business electric transactions. This in turn requires a 
very large business processing system that may handle 
thousands of sites, tens of thousands of users, and 
hundreds of thousands of processes [8]. 

Workflow management technology [14] [ 181, 
developed in the last few years, can handle 
reengineering business and information processes, 
business process automation and application 
integration. It supports the everyday operation of many 
enterprises and their work environments. But to 
effectively support workflow management, businesses 
must adapt their existing computing environment to a 
new distributed component-oriented environment [4]. 
This new environment should support evolution, 
replacement, and new workflow applications or 
component systems as processes are reengineered. It 
should also have consistent resource representations, 
identical service interfaces, and easy-to-use developing 
support. 

Many commercial Workflow Management 
Systems (WFMS) are well suited for simple form-based 
office procedures [2]. However, more complex 
applications (such as production process control, 
telecommunication service provisioning, insurance 

This work partially supported by DARPA (Navy) contract # N66001-96-C-8527, DOE grant DE-FG02-96ER25290, DOE 
contract Sandia LD-9391, Northmp-Grumman (for the DoD HPCMODPET program), DOE D4590 00-16-3C and DARPA (GA) 
SC H607305A 

0-7695-0896-0/00 $10.00 0 2000 IEEE 
99 

mailto:ljjin@hpl.hp.com
mailto:grimshaw@cs.virginia.edu


Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
2000 2. REPORT TYPE 

3. DATES COVERED 
  00-00-2000 to 00-00-2000  

4. TITLE AND SUBTITLE 
From Metacomputig to Metabusiness Processing 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
University of Virginia,Department of Computer Science,151 Engineer’s 
Way,Cahrlottesville,VA,22094-4740 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 

18. NUMBER
OF PAGES 

10 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



claim handling, and medical services) need high 
performance, scalability, reliability, automatically 
enforced consistency, etc. Existing commercial WFMS 
do not scale well, have limited fault-tolerance, and are 
inflexible when interoperating with other workflow 
systems [ 11. WFMS developers consider the Common 
Request Broker Architecture (CORBA) [Siegel 961 and 
other technologies, including DCOM and Enterprise 
Java Beans, to be solutions to these problems. 

CORBA is a standardized specification for a 
distributed-object platform architecture. It aims to 
archive application interoperability in multi-vendor 
networked environments. It has many attractive features 
that match the requirements of large-scale business 
processing. For example, the OMG (the Object 
Management Group) IDL is an interface definition 
language used to define CORBA object types by 
defining their interfaces. With IDLdescribed 
interfaces, CORBA objects are able to interoperate with 
each other in a transparent way and in a fully 
distributed environment. The mappings between OMG 
IDL and other languages (such as C, C t t ,  Smalltalk 
and Java) are included in CORBA specifications. The 
General Inter-ORB Protocol presents WFMS the 
possibility to construct interoperable data-support 
infrastructures. CORBA also offers many object 
services that support reliable and correct execution of 
business processes. In early 1997, OMG set up a 
Workflow workgroup to establish a Workflow 
Management Facility (WfMF) specification. 
Researchers at Newcastle University, University of 
Georgia, Sema Group (Spain) and many other 
institutions and companies are using CORBA as the 
data supporting system of their workflow management 
systems [5] [21] [13]. 

However, CORBA is an architecture specification, 
not an implemented system. Most COMA products 
comply with specifications but actual implementations 
differ from each other. They also implement different 
services in different manners. 

These factors suggest that solutions which address 
distributed platform problems for large-scale business 
processing need to go beyond the CORBA 
specification. 

1.2 Metacomputing systems 

If an applications is to take advantage of the 
increasing availability of high-performance networks 
and processors, it must be able to share resources 
spread over complex, large-scale, heterogeneous, 
distributed environments spanning multiple 
administrative domains. This kind of environment is 
called a metacomputing system, a networked virtual 
supercomputer. Metacomputing systems share many 

characteristics with traditional parallel and distributed 
computing systems. Like distributed systems, they 
collect geographically separate resources of varying 
capabilities through high-performance but sometimes 
unreliable networks and share those resources among 
geographically separate users. Like parallel computing 
systems, they allow users to divide and schedule their 
application tasks carefully in order to balance the 
communication cost and the usage of processing power. 
However, a metacomputing system distinguishes itself 
from parallel and distributed computing systems via its 
single, coherent, virtual system image. It is the 
metacomputing system’s responsibility to support the 
illusion of a single machine by transparently managing 
data movement, caching, and conversion; detecting and 
managing faults; ensuring that the user’s data and 
physical resources are adequately protected; and 
scheduling application components on the resources 
available to the user [12]. A metacomputing system is 
designed to be a computing platform that can scale to a 
large-scale system, handle heterogeneity at multiple 
levels, allow effective interoperations among different 
system components, remain secure, and combine 
resources from different administrative domains. The 
high-performance application categories targeted by 
these metacomputing systems are: desktop 
supercomputing, smart instruments, collaborative 
environments and distributed supercomputing. Most of 
those applications that are running on a metacomputing 
system are computing-intensive; for instance, multi- 
scale climate modeling, computational fluid dynamics, 
real-time image processing and visualization. 

We believe that a good metacomputing system can 
address these issues for large-scale business processing. 
We use the term metabusiness processing to describe 
business processing on metacomputing systems. Legion 
and Globus are two active metacomputing research 
projects [6] [3] that can support metabusiness 
processing. These two projects share a common base of 
target environments, technical objectives, and a number 
of similar design features. This paper will focus on 
Legion, however, and discuss our efforts to extend 
Legion’s abilities so that it can support metabusiness 
processing. We first describe the Legion system‘s basic 
structure in Section 2. In Section 3, we lay out a 
framework to support CORBA specifications in Legion. 
In section 4, we discuss mapping object services 
between Legion and CORBA. We conclude our works 
by identifylng topics for further research in section 5.  

2. The Legion system 

Legion is an object-based metacomputing system. 
Legion’s major design objectives is to offer high- 
performance application programmers a powerful tool 

100 



set and an easy-to-handle environment. This 
environment is. in a heterogeneous, large-scale 
distributed system in which computing and storage 
resources belong to multiple organizations. Legion 
addresses distributed computing issues such as 
communication, task scheduling, resource management, 
security, fault tolerance, scalability and heterogeneity 
management. 

Application Programs 

-. -. -. 
'. 8 .  

0*  Single System Image '., 
/ '. 

I .......................... 

i Object Structure Image "'%.., 

I ...... ..... 
-5 I .,.@"'"" ".. 

! /  ; .  '%. ; 
:. .. 

\i '.$$c-> 
Resource Image 

..... . i:... ....................... "S".S . 
Figure 1. Legion images 

We can understand Legion from three different 
viewpoints: Legion's resource image, Legion's object 
structure image, and Legion's single system 
image. These images' relationships are shown in 
figure 1. 

2.1 Resource image 

Resource management is a typical operating 
system problem. As a wide-area operating 
system, Legion utilizes various resources that 
may be distributed across the Internet. These 
resources can include processors, memory, 
network, persistent storage, YO devices, 
databases and application tools and 
environments and may be owned and controlled 
by different organizations. Legion provides a 
consistent interface to share and manage these 
resources over networks. Inevitably, this diverse 
collection of resources involves different 
architectures, processors, data representation 
formats, data alignments, system configurations, 
and operating systems. This makes a challenging 
environment for a would-be application 

programmer. 
Legion looks at resources as physical components 

that together form a worldwide virtual computer system 
(figure 2). It represents and manages these components 
with objects that share identical operating interfaces 
and various attributes. The objectives of resource 
management in Legion are: (1) to reduce completion 
time of certain tasks through parallel execution; (2) to 
share spare or expensive resources between users who 
may be separated by large distances; and (3) to support 
collaborativc works by collecting resources from 
different administrative domains into a single 
application working environment. In many ways, 
Legion's resource management objectives and 
strategies are similar to WFMS, except that no human 
resources and activities are currently involved in 
Legion resource management. 

For example, the Harvard Medical School is 
performing research on the causes and symptoms of 
multiple sclerosis. The core research group has 
developed image-processing pipelines that build three- 
dimensional models of characteristic brain lesions from 
MRI scans. To significantly advance the research, they 
need MRI scans from multiple partner institutions as 
well as a database of their own image-processed results 
for their research partners. As a first step, they would 
like a tool that can automatically identify MRI scans 
pertaining to the study whenever they are made at 
partner hospitals, securely move those scans over the 
Intemet to Harvard, and then process them. Very little 
administrative support for the tool can be expected at 
any of the partners. More metacomputing application 
cases can be found in [6]. 

Figure 2. Resources of the Legion system. 

101 



Figure 3. Legion class derivation 

2.2 Legion's object structure image 

In Legion's object model [ll], each element, 
including all kinds of resources, is represented by an 
independent, active object. For instance, processors are 
represented by host objects, storage devices are 
represented by vault objects. Legion objects are all 
instances of classes and each class is itself a Legion 
object, a metaclass object. Class objects are responsible 
for creating and managing their instances and for 
selecting appropriate security and object placement 
policies in a distributed environment. These objects 
communicate by means of Legion's remote invocation 
service. All Legion objects export a common set of 
object-mandatory member functions, such as 
deactivateo, getInterface0, and add-attributeso. Class 
objects also export a set of class-mandatory member 
functions, such as createInstance(), activatehstanceo, 
and deactivateInstance(). 

Legion defines the interfaces and functionality of 
several core class objects, such as Legionclass, 
LegionHost, Legionvault, and LegionBindingAgent. 
Legionclass is the base class of all other Legion classes 
and provides the full set of Legion's class-mandatory 
member functions The core Legion classes provide 
mechanisms for the user-level classes to implement 
appropriate policies and algorithms. They set the 
minimal interface that the core objects should export. 
LegionHost, Legionvault, and LegionBindingAgent are 
base classes for Legion's core class types, including 
host objects, vault objects, and binding agents. Legion 
allows users to alter class objects so that they can apply 
their own object management strategies to their 
physical resources. 

Figure 3 demonstrates how processing 
resources are organized and managed by Legion 
objects and the relationship between those Legion 
objects. Vault objects and binding agents have 
similar class hierarchies. 

2.3 Legion's single system image 

The single system image in the Legion 
system means that Legion provides a universal 
shared name space that names all objects of 
interest to the system and its users. These objects 
represent files, processes, processors, storage, 
users, and services. This allows any Legion object 
to transparently access any other Legion object 
without regard for location or replication. Single 
system image also means that, when a user object 
is created Legion should allocate processor and 
disk space for this object transparently if user does 
not intend to explicitly place the object on a 

particular host or disk. 
For example, users who login to the same Legion 

system can use legion-Is, a Legion command-line tool, 
to see the same Legion context space information of 
system components, tools and user applications (figure 
4). 

$ legion-1s -R 

class 
etc 
home 
hosts 
impls 
vaults 

(context 1 
(context) 
(context) 
(context 
(context) 
(context 
(context 

In context llclass'g : 
(context 

.. (context 
AuthenticationObjectClass (class) 
BasicFileClass (class) 
BasicSchedulerClass (class) 
BindingAgentClass (class 
ContextClass (class) 
Legionclass (legion class) 
UnixImplementationClass (class) 

Figure 4. Output of Legion command legion-Is 

Given that the Legion system is running on top of a 
large-scale, distributed, heterogeneous computing 
platform, the Legion single system image masks a great 
deal of complexity from the users' view. 

102 



3. A framework to support CORBA inside 
the Legion system 

C O D A  is a distributed object architecture 
specification proposed by a consortium of around eight 
hundred partners. Its basic objective is to achieve 
interoperability between applications that reside in a 
heterogeneous computing environment. By supporting 
CORBA, Legion and participating applications can 
cooperate with other CORBA systems and CORBA 
applications via standard interfaces. It is the first step 
towards a metabusiness processing system. 

3.1 Legion and CORBA 

Legion and CORBA have different design 
objectives. Legion focuses on sharing computing 
resources on a wide-area network and on presenting a 
single virtual computer image to application users, as 
well as hiding resource heterogeneity fiom application 
programmers. Legion integrates considerations for 
scalability, security and fault tolerance issues in a wide- 
area computing environment into each level of its 
design and implementation. Legion adopts a macro 
dataflow execution model. 

The CORBA specification, on the other hand, 

concentrates on software integration issues. It 
emphasizes interoperability of components through 
standard interfaces. CORBA has a client/server 
execution model. Many CORBA products comply with 
specifications, but actual implementations differ in the 
way they implement services. 

Both, however, use object-based architectures and 
have interfaces that could be described with some kind 
of IDL. Legion and C O D A  support component 
interoperability between multiple programming 
languages and heterogeneous execution platforms. They 
also both use object wrappers to support legacy code. 
These common features are the foundation for 
designing a fiamework in Legion to support CORBA 
standard. 

3.2 How to make Legion CORBA-compliant 

A CORBA-compliant system should include an 
Object Request Broker (ORB) with a Basic Object 
Adapter (BOA). It should have an IDL compiler(s) that 
supports mapping between OMG IDL and at least one 
high level language, such as C++, C, or Java. We could 
design a new CORBA ORB sub-system for Legion. 
This approach would allow us to stick to the CORBA 
specification from the design stage. The problem is that 
there will be a lot of redundant work implementing 

Figure 5. How to support CORBA applications in Legion 

103 



functions and services already in the Legion system but 
needing slightly differences in interface description and 
semantics. 

Or, we could integrate Legion with another 
CORBA implementation, such as Orbix or Visibroker. 
The advantage of this strategy is that we only need to 
build some kind of bridge mechanism between Legion 
and other ORB system. The disadvantage of this 
strategy is that Legion is crippled when handling 
CORBA-related applications. It would also introduce 
two additional data-transfer layers for CORBA 
applications. 

We could try designing a group of library functions 
to support CORBA applications. This is the easiest way 
to implement the supporting framework but it’s hard to 
use. It’s unlikely that we can ask CORBA 
users to call Legion functions in their 
implementation code when they want to 
do their work on a so-called CORBA- 
compliant platform. 

Finally, we can use Legion’s 
distributed object model and object 
services to simulate activities of a 
CORBA ORB and a BOA. We can then 
implement a compiler to perform the 
mapping between the OMG IDL and 
high-level programming languages, such 
as C++ and Java, and the mapping 
between CORBA’s object services and 
Legion’s object services. In this scenario 

and application-name.client-stubs.c files are Legion 
client stub code, and will be compiled and linked with 
the client implementation code to form a executable 
CORBNLegion client program. The appli- 
cation-nameserver-stub.h, application-nameserver- 
stub.c and application-name.mapping.h files will be 
compiled and linked with the server implementation 
code to form a CORBALegion server program. This 
server program will be registered into the Legion 
system before it is ready to accept requests from the 
client program. The application-name.mapping.h 
includes the implementation code of public interface 
mapping between the OMG IDL and C++. Legion 
offers tools such as legion-get-interface to allow 
applications or users to get interface information for 
any object in the Legion system. 

Legion itseif like an ORB. 
Legion cooperates with other ORBS 
through public interfaces described in the 4--- : retun Vdw(S) 

-+ : class id (hd), method id (legion function identifier ), parameter list 

OMG IDL. CORBA applications can get 
direct support from the Legion runtime 
library without communication between 
redundant middle layers. 

Figure 6. Execute a CORBA program in Legion 

Figure 6 shows a top view of running a CORBA 
application on Legion. The object request issues from 
the client p r o e  (1). The client stub translates the 
request into Legion’s object request format and submits 
the request to the Legion runtime library, Legion ORB. 

3.3 The 
Legion 

supporting framework for 

Based on the discussion in section 3.2, figure 5 
shows a framework for supporting CORBA in the 
Legion system. Users who want to run CORBA 
applications on Legion should develop their server 
implementation code and client implementation code 
and have the public interfaces of their application 
described with the OMG IDL. 

The LegionAenerate-IDL is a C++/IDL compiler 
for the Legion system. This compiler takes the interface 
description, using the IDL as input, and generates five 
stub files that include all Legion-related method 
invocations. These stub files include object service 
mapping between CORBA object services and Legion 
object services. The application-name.client4ubs.h 

The Legion ORB locates the server object and sends a 
Legion object service request to an instance of the 
registered server program (here, the server program is 
User-Class) (3). The server stub translates the Legion 
object service request back to a format that the server 
implementation code can understand, i.e. the C t t  
format that is mapped from the IDL interface (2). The 
retum value, if any, will follow the path backward from 
the instance of server object to the client program (4). 

An Object Request Broker (ORB) should be able to 
locate and reference server objects. It should 
transparently mediate invocations on remote objects 
and their replies. It also conciliates diversities in 
machine and language formats by marshalling and 

104 



unmarshalling request parameters and server replies. 
An ORB creates, activates, de-activates, and destroys 
instances of server objects using the operations of 
CORBA's life-cycle service or a replacement. 

Figure 7 shows more detail of how the Legion 
runtime system works as an ORB when a CORBA 
application accesses its services through client and 
server stubs generated by Legion-generate-IDL. Object 
A is the client object and Object B is an instance of the 
server class object. In the client stub code, a Legion 
method handler is set up before the client issues any 
requests. After that, a Legion program graph [Viles97] 
is initialized. The input parameters are packed into a 
Legion buffer and added to the Legion program graph 
(1). The graph is then executed (2 & 3). At this point, 
the client program will wait for the retum value from 
the Legion runtime system. If there is no exception, the 
return value will be available from a receiving Legion 
buffer (4). In server stub code, all available methods 
that the server object is going to export are registered 
into Legion's runtime system and are enabled to accept 
requests from clients. A parameter stack is set up to 
receive incoming parameters. Those parameters will be 
unpacked from a receiving Legion buffer and used to 
call the method exported by the server class object. 

matches the retum values with the pending invocation 
and sends them to correct invocation. 

4. Mapping Between Legion And CORBA 

The object model and object services of CORBA 
and Legion are similar but have different 
implementation details and different interfaces. In 
CORBA's object model, objects are some encapsulated 
entities that perform services. An object is referred to 
by a unique object reference. The CORBA object 
model guarantees that a request invocation will provide 
a return. It may be either a valid retum or an exception 
value. Based on this guarantee, client processing is 
largely simplified, since a client will not be left to hang 
up indefinitely because of failures from network, 
processing nodes, storage devices or server software. In 
Legion's object model, all Legion objects belong to 
classes and are logically independent, address-space- 
disjoint. Legion objects communicate via non-blocking 
method calls. They stay in one of two possible states: 
active or inert. Legion objects are named using also a 
unique LOID (Legion Object ID). 

4.1 Life cycle service 

Figure 7. Working procedure of the Legion ORB. 

The invocation matcher on the server side 

The CORBA Life Cycle 
Service defines services and 
interfaces for creating, deleting, 
copying, and moving objects [17]. 
Life Cycle Service assumes 
CORBA implementations support 
object relocation. The "factory" is 
an object that creates another object. 
It also has well-defined IDL 
interfaces and implementations in 
some programming language. 
Factories provide the client with 
specialized operations to create and 
initialize new instances in a natural 
way for the implementation. Before 
creating an object in another 
location, the client should have 
information about a factory. 
Through contact with the factory 
object, the object is virtually 
created. To create an object, a client 
must posses an object reference for 
a factory, which may be either a 
generic factory or an object-specific 
factory, and issue an appropriate 
request on the factory. Then, a new 

105 



finding mechanism, such as a naming context, is used 
by clients to find rr factory. Clients can pass a factory 
object as a parameter to an operation the client 
supports. 

Class objects in the Legion system are object 
managers and policy makers. They offer life-cycle 
service to objects that belong to them. Class objects are 
responsible for object creating, deleting, copying, 
moving, object locating and binding. Class objects and 
CORBA factory objects and factory finders have 
similar functionality. The LegionAenerate-IDL is 
responsible for mapping life-cycle service between 
Legion and CORBA. It generates method invocations to 
those Legion's runtime library functions that related to 
manipulating objects. For example, CORBA's object 
creating method in the Generic Factory looks like this: 

interface GenericFactory { 
boolean support (in Key k) ; 
Object create-object (in Key k, 

in Criteria the-criteria) 

CannotMeetCriteria) ; 
raise (NoFactory, InvalidCriteria, 

1; 
The key is a name used to identify the desired 

object to be created. It is defmed by the Naming 
Service. The criteria parameter is expressed as an IDL 
sequence of name-value pairs that will be extensible. 
Object can be written that do not interpret the name- 
value pairs, but just pass them on to other objects. 

The Legion object creating code that the 
Legion-generate-IDL generates looks like this: 

LOID = Legion.CreateObject( 
class-loid, classjarams, 
instancegarams) ; 

Where the class-loid is the Legion Object 
Identifier (LOID) of the class object of which the client 
wants to create an instance. The LOID is an internal 
object identification mechanism. The class-loid is 
obtained through a Legion library function that 
translates a Legion context path name into a LOID: 

class-loid = Legion.ContextPathLookup( 

The instance parameter lists can be used to transfer 
additional configuration information into the class 
object. 

c las s-contextgat h) ; 

4.2 Naming service 

The COMA Naming Service provides the ability 
to bind a name to an object relative to a naming context. 
A naming context in CORBA is an object that contains 
a set of name binding in which each name is unique. 

Resolving a name determines the object associated with 
the name in a given context. Binding a context to 
another context creates a naming graph -- a directed 
graph with nodes and labeled edges, where the nodes 
are contexts. Given a context in a naming graph, 
following the sequence of names will reference an 
object. This sequence of names is called a compound 
name and it defines a path in a naming graph. Names 
are structures, not just character strings. The structure 
includes a human-chosen string plus a kind field. 
Graphs of naming contexts can be supported in a 
distributed, federated fashion. The scalable design 
allows the distributed, heterogeneous implementation 
and administration of names and name contexts. Via a 
names library, name manipulation is simplified and 
names can be made representation-independent. This 
allows their representation to evolve without requiring 
client changes. CORBA's naming services 
implementations can be application-specific or based on 
a variety of naming systems currently available on 
system platforms. 

Legion has a three layer naming mechanism for 
identifying objects. These are: Legion contexts, Legion 
Object Identifiers (LOIDs) and Legion Object 
Addresses (LOA). Each object in Legion has a unique 
LOID but may have more than one LOA. The Legion 
BindingAgent is responsible for binding a LOID to an 
LOA. Legion contexts are similar to Unix directories. 
They can point to other contexts and files as well as any 
other object in the Legion system, such as hosts, class 
objects, vaults and tty objects. Command-line 
operations on Legion contexts look like this: 

$ legion-1s -1 
(context) 

class (context) 
hosts (context) 
vaults (context) 
home (context) 

$ legion-context-create /home/tmp 
Creating context " /home/ tmp" in 
parent . I1 . 
New context LOID = 1 1 1 . 0 1 . 0 5 . 6 0 8 . 0 0 . . . 1 1  

$ legion-1s -R 

class (context 
hosts (context 
vaults (context 
home (context 1 

(context 1 

In context "home" 
(context 

.. (context 
tmP (context 1 

106 



$ 

In these examples, legion-1s is similar to “Is” 
command in Unix, legion-context-create is similar to 
“mkdir”, and legion-set-context is similar to “cd”. 

LOIDs, which are location-independent strings of 
bits, are used to uniquely identify Legion objects. Basic 
LOIDs have fields such as type, domain, class id, 
instance id, and public key (RSA). The LOA is a list of 
object-address elements and semantic information that 
describes how to utilize the list. 

The basic naming service features of Legion and 
CORBA are very similar. In fact, Legion’s naming 
service can be used as a kind of implementation of 
CORBA Naming Service by the Legion-generate-ID . 

4.3 The Legionxenerate-IDL 

The core part of the CORBA-supporting 
framework for Legion is the IDL compiler for 
Legion/C++, Legion-generate-IDL. All 
C++/IDL mappings and CORBNLegion object 
service mapping are camed out by this 
compiler. The Legion-generate-IDL Legion’s 
IDL compiler is composed of front-end, abstract 
syntax-tree management and two different back- 
end parts. The front-end part of the compiler is 
responsible for lexical and syntactical analysis. 
The result of front-end analysis is stored into an 
Abstract Syntax Tree (AST). The back-end 
generates stub code according to information in 
AST. Currently, there are two kinds of back-end 
parts available in the Legion system: the 

distributed platform with a unique capability for 
hamessing huge amounts of computation and storage 
resources scattered worldwide. 

Future works include implementing more CORBA 
service mapping in the LegionAenerate-IDL, building 
a CORBA IIOP proxy object in Legion so that Legion 
can communication with other CORBA OPRs in an 
effective way, and cooperating with business- 
processing users to develop practical applications on a 
CORBA-compliant Legion system. 

With the work discussed above, Legion is going to 
move from a system for traditional computation- 
intensive applications to a system for data-intensive 
business processing applications. 

and the Legionjava-be. The Figure 8. Structure mapping beween OMG [DL and 
LegionlC++ Legionjava-be only generates client stub files, 

since the Java implementation of object is not 
yet supported in Legion. 

The Legion-generate-IDL generates Legion-aware 
stub code. It is responsible for language mapping 
between IDL and C++ and between IDL and Java. 
Figure 8 shows an example of IDL structure mapping. 
The target class includes not only those mapped data 
type and auxiliary methods required by CORBA 
specification but also Legion special data pack and 
unpack methods. 

5. Conclusion 

Legion, a large-scale heterogeneous distributed 
computing platform, is not only capable of handling 
large-scale computing intensive applications but also 
has great potential as a platform for large-scale business 
processing. By supporting the CORBA standard, 
Legion offers CORBA-based business processing 
systems and applications a well-scaled heterogeneous 

References: 

[ I ]  G. Alonso, D. Agrawal, A. El Abbadi, and C. Mohan, 
Functionalities and Limitations of Current Workjlow 
Management Systems, 1997. 
httu:Nwww.almaden.ibm.com/cs/exotica/exotica aaDers.htm1 
hrescnt. 

[2] Andnej Cichocki, Abdelsalam (Sumi) Helal, Marek 
Rusinkiewicz, and Darrell Woelk, Worylow and process 
automation: Concepts and Technology, Kluwer Academic 
Publishers, 1998. 

[3] I. Foster and C. Kesselman, “Globus: A Metacomputing 
Infrastructure Toolkit,“ lntl J. Supercomputer Applications, 

[4] D. Georgakopoulos, M. Homick and A. Sheth, “An 
Overview of Workflow Management: From Process Modeling 
to Workflow Automation Infrastructure,” Journal on 
Distributed and Parallel Database Systems, 3(2) April, 1995. 

11(2): 115-128, 1997. 

107 



[5] Paul Grefen, Barbara Pemici, and Gabriel Sanchez, 
Database Support For Worwow Management, The WIDE 
project, Kluwer Academic Publishers, 1999. 

[6] A. Grimshaw, A. F e d ,  F. Knabe, and M. Humphrey, 
"Legion: An Operating System for Wide-Area Computing," 
Technical Report CS-99-12, University of Virginia, March, 
1999. 

[7] Andrew S. Grimshaw and Wm. A. Wulf, "Legion-A 
View From 50,000 Feet," Proceedings of the Fifrh IEEE 
International Symposium on High Performance Distributed 
Computing, IEEE Computer Society Press, Los Alamitos, 
CA, August 1996. 

[8] M. Kamath, G. Alonso, R. Guenthoer, and C. Mohan, 
"Providing High Availability in Very Large Workflow 
Management Systems," Proceedingsof the Fifrh International 
Conference on Extending Database Technology, Avignon, 
March 1996. 

[9] Bemd Kramer, Michael Papazoglou and Heinz-W. 
Schmidt, Information Systems Interoperability, Research 
Studies Press LTD, 1998 

[ 101 Legion Group, Legion 1.6 Developer Manual, Oct. 1999. 
httD://lerrion.virrrinia.edu/documentation.html 
[ll] Michael J. Lewis and Andrew Grimshaw, "The Core 
Legion Object Model," Proceedings of the Fqth IEEE 
International Symposium on High Performance Distributed 
Computing, IEEE Computer Society Press, Los Alamitos, 
CA, August 1996. 

[12] Greg Lindahl, Andrew Grimshaw, Adam F e d ,  and 
Katherine Holcomb, "Metacomputing--What's in it for me?," 
http://legion.virginia.edu/papers.html. 

[13] J. Miller, A. Sheth, K. Kochut and X. Wang, "CORBA- 
Based Run-Time Architectures for WorMow Management 
Systems," Journal of Database Management. Special Issue on 
Multidatabases, Vol. 7, No. 1, pp. 16-27, Winter, 1996 

[14] C. Mohan, "Recent Trends in Workflow Management 
Products," Standards and Research, Proceedings of the NATO 
Advanced Study Institute (AS0 on Worylow Management 
Systems and Interoperability, Springer Verlag, 1998. 

[ 151 Thomas J. Mowbray and Willm A. Ruh, Inside CORBA: 
Distributed Object Standards And Applications, Addison- 
Wesley, 1997. 

[16] C. Mohan, G. Alonso, R. Guenthoer, M. Kamath, and B. 
Reinwald, "An Overview of the Exotica Research Project on 
WorMow Management Systems," Proceedings of the Sixth 
International Workrhop on High Performance Transaction 
Systems, Asilomar, September 1995. 

[ 171 Object Management Group, CORBAservices: Common 
Object Services Specification, Nov. 1997. 

[18] Marc-Thomas Schmidt, "The Evolution of WorMow 
Standards," IEEE Concurrency, pp. 44-52, July-Sept. 1999. 

[ 191 Jon Siegel, CORBA Fundamentals and Programming, 
John Wiley & Sons, Inc, 1996. 

[20] Charles L. Viles, Michael J. Lewis, Adam J. Ferrari, Anh 
Nguyen-Tuong, and Andrew S. Grimshaw, "Enabling 
Flexibility in the Legion Run-Time Library," Proceedings of 
the International Conference on Parallel and Distributed 
Processing Techniques and Applications (PDPTA'97), pp. 
265-274, Las Vegas, Nevada June 30-July 2, 1997. 

[21] S.M. Wheater, S.K. Shrivastava, and F. Ranno, "A 
CORBA Compliant Transactional Workflow System for 
Intemet Applications," MIDDLEWARE' 98, The Lake 
District, UK, September 15-18, 1998. 

108 

http://legion.virginia.edu/papers.html

